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Abstract:
This paper aims at demonstrating how and that model predictive control (MPC) strategies can
be used to determine optimal intervention policies against the COVID-19 pandemic. Especially
for the time after a first wave of infection and before a vaccine can be safely distributed to a
sufficient extent, the intervention experience from the first outbreak can be utilized to guide
the policy decision in this period. The MPC problem in this paper takes the pandemic in
different regions of a country and its neighboring countries into account, while policies such
as wearing masks or social distancing are selected as inputs to be optimized. This optimized
policy balances the risk of a second outbreak and socio-economic costs, while considering that
the measure should not be too severe to be rejected by the population. Effectiveness of this
policy compared to standard intervention policies is compared through numerical simulations.
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1. INTRODUCTION

The outbreak of COVID-19 in 2020 has changed the life of
virtually almost everyone on the planet. The rapid spread
of the virus, together with the high mortality rate in the
early period of the outbreak, forced the governments to
deploy intervention policies such as lock-down of cities, or
restricting the social life considerably. These policies have
indeed shown their effect on controlling the spread of the
virus, but also caused significant harm to the economies.
In addition, parts of the populations of many countries
have become annoyed by restrictions, and the desire for
returning to normal has been getting stronger with time.
However, recent observations revealed that second (or
later) waves of infection can indeed be triggered once
the policies are relaxed, and these waves are experienced
to have higher amplitudes than the first one in several
countries. As the availability and distribution of vaccines
still is a certain time ahead (as of November 2020), gov-
ernments are forced to deploy restrictions like lock-down
policies again in order to mitigate the second or a later
wave. Simple intervention scheme of the type of bang-bang
control, as switching repeatedly between complete shut-
down and no restrictions, quickly lets authorities loose
credibility, and the effectiveness of intervention measures
gradually decreases over time. This raises the question of
which intervention schemes are more suitable, and this
paper intends to address this question from the perspective
of control theory.

This paper aims at illustrating and investigating the use
of model-predictive control (MPC) to determine interven-
tion schemes against COVID-19 which are continuously
adapted to the evolution of the pandemic and optimized
with respect to a chosen criterion. The goal is to use the
experience gathered during the first wave of infection, such

as the average infecting rate of the virus, the average heal-
ing time of the patients, effectiveness of different policies in
controlling the spread of the virus, or the socio-economic
costs of these policies. The intervention policies considered
here include, among others, wearing masks, social distanc-
ing in different regions, reserving medical staff for COVID-
19 patients, or introducing traffic limitation between dif-
ferent regions and countries. The geographic adjacency
between regions is also taken into account, such that each
region can deploy its own policy against the virus. This
setting can help to evaluate whether a common interven-
tion policy of different regions is necessary. It is stressed
here that, while the models and measures are adapted to
the COVID-19 pandemic, the insights and findings should
be transferable with suitable modifications to other pan-
demics as well. The next section first provides a review on
existing work on epidemic modeling and control problems,
with distinction of whether the work refers to periods
before or after the outbreak of COVID-19. In Sec. 3, the
nonlinear epidemic model, the input and state constraints,
and the cost functions of the considered MPC approach
are specified. Section 4 compares strategies obtained from
MPC with simpler schemes such as bang-bang policies. To
address the uncertainties of modeling the spread of the
virus and thus the influence to the corresponding MPC
problems, different extensions are introduced in Sec. 5,
before Sec. 6 concludes the paper.

2. LITERATURE REVIEW

To model the spread of a virus, the susceptible - infected
- susceptible (SIS) model has been developed in Kermack
and McKendrick (1932); Wang et al. (2003): Any individ-
ual is either infected, or susceptible to infection at any
time in this model, and it is assumed that a susceptible
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person may be infected by neighboring persons with some
given infection rate, where the network graph structure
determines the connectivity between persons. An infected
person may be cured with certain healing rate, and by this
returns to the state of being susceptible. Based on the SIS
model, a 2n continuous-time Markov model has been intro-
duced in Van Mieghem et al. (2008), where the number 2
denotes the two states of a person, susceptible or infected,
and n denotes the total number of people in the graph. The
healing and infection of any person i ∈ N = {1, · · · , n} of
a Markov model are described by two independent Poisson
processes with rates δi and βi, respectively. Although the
2n Markov model describes the spread of a virus disease
often fairly well, its shortcoming is obvious: the state-space
size grows exponentially with the number n. Accordingly,
an N − Intertwined model has been proposed in Gourdin
et al. (2011), in which a mean-field type approximation
technique is applied to approximate the 2n Markov model.
This approximation enables one to only use a set of n
nonlinear ordinary differential equations to describe the
dynamics of the epidemic, i.e., by using pi(t) to denote
the probability of person i being infected in time t, the
following dynamics applies:

ṗi(t) = (1− pi(t))βi

∑

j∈N

αijpj(t)− δipi(t), i ∈ N. (1)

In addition to δi and βi representing the local healing and
infection rate of person i, the αij in (1) corresponds to the
connectivity between two persons i and j in a connection
graph (while each node of the graph represents a person).
In general, an adjacency matrix A can be introduced to
describe the connection graph among the people, where
αij denotes an entry of matrix A, and αij = 1 applies if i
and j are connected, while αij = 0 otherwise, and αii = 1
for all i ∈ N . Note that if the index i refers to a group
of persons instead of an individual (which is the case in
the rest of this paper), then the pi(t) in (1) represents
the percentage of infection of a group with index i. The
dynamics (1) can also be written in matrix form:

ṗ(t) = (BA−D)p(t)− diag(pi(t))BAp(t), (2)

where p(t) = [p1(t), · · · , pn(t)]
T , B = diag(βi) and D =

diag(δi). As the extinction of the disease implies p(t) =
0 in (2), research has focused on determining stability
conditions for the origin of (2). First of all, one of the most
important indices in epidemiology, the basic reproduction
number R0 = ρ(D−1ATB), is derived from this model,
where ρ denotes the spectral radius of a matrix, see
Khanafer et al. (2016). It has been proven that if R0 ≤ 1,
then the disease-free equilibrium (DFE) is asymptotically
stable. In case R0 > 1, there also exists a unique endemic
equilibrium which is asymptotically stable according to
Fall et al. (2007). This endemic equilibrium also refers to
herd immunity.

The research is then extended to account for homogeneous
or heterogeneous cases, i.e., whether the healing and infec-
tion rate are identical or different for all people. Given the
epidemic model (2), the following optimal control tasks
have been proposed in literature: 1.) An optimal vaccine
allocation plan is considered in Wan et al. (2007); Preciado
et al. (2013) and the task there is to investigate how to
effectively distribute the vaccine; 2.) The work in Sah-
neh and Scoglio (2012) proposed an optimal information
dissemination strategy to control the epidemic, in which

the susceptible group may receive an alert before being
infected. The optimal control task is to construct the
alert network, such that the susceptible persons are always
warned in time, thus reducing the R0 value; 3.) The work
in Wan et al. (2008) proposed a spatially heterogeneous
strategy for controlling the spread of the virus, where the
population is categorized into different groups sharing the
same or similar healing and infection rate.

After the outbreak of COVID-19, existing epidemic mod-
eling and control techniques have been quickly adapted
to capture particular characteristics of this virus. A quite
detailed review to these adaptations is given in Kantner
and Koprucki (2020). The work in Giordano et al. (2020)
extended the SIS model to a more explicit one, the so-
called SIDARTHE model accounting for the pandemic in
Italy, which includes more disease-related status of the
population at the beginning of COVID-19 . Based on the
SIDARTHE model, the work in Kantner and Koprucki
(2020) proposed an optimal non-pharmaceutical interven-
tion strategy for the case that a vaccine is never found. For
the work by Köhler et al. (2020), which also considers the
pandemic in Germany, the social distancing requirements
are optimized through an MPC strategy in order to mini-
mize the fatalities over a fixed period of time. The above
work has all been written in the mid of the first wave of
COVID-19, thus the main concern was limited to either
finding a suitable model to reproduce the evolution of the
pandemic during the first outbreak, or to evaluate whether
the virus can be erased through a given policy. After the
first wave, however, a fast elimination of the virus without
vaccine has proven to be impossible in most countries
(whereas the work by Liu and Stursberg (2021) has started
to consider an optimized distribution of limited amount of
available vaccines). The focus thus should be shifted to the
question of how to properly utilize the experience gathered
during the first wave, such that better intervention policies
can be developed to mitigate the pandemic, until a vaccine
is distributed to significant extent.

3. MODEL PREDICTIVE-BASED INTERVENTION
POLICY MAKING

As the geographic position of a country plays an important
role in analyzing the spread of diseases, a connection graph
is constructed to model the adjacency to other countries,
as well as the adjacency among different regions within a
country. For one country to be investigated, let an overall
set of nodes N = {1, · · · , n} = Ns ∪ Nf be given, where
the nodes in Ns represent the regions of the country,
while the nodes in Nf represent the neighboring countries.
A directed graph G = {N,E} is constructed, where E
models the set of edges connecting the nodes. For the
connection of any two local regions i, j ∈ Ns, two edges
{ei,j, ej,i} ⊂ E are introduced (direction irrelevant). In
case a region i ∈ Ns shares border with a different country
j ∈ Nf , a directed edge ei,j ∈ E (from j to i) is assigned. It
is emphasized that the intervention policy to be addressed
will take into account the pandemic in both local regions
and neighboring countries, but only the control in the
local regions is deployed. An adjacency matrix A can be
determined for the graph, in which αij = 1 if the edge ei,j
exists and αii = 1 for all i ∈ Ns, see Fig. 1.
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In addition to the standard SIS model in (1), the
Susceptible-Infected-Recovered (SIR) model, or the more
complicated SIDARTHE model have been suggested to
model and study the epidemic. The use of the SIR
model is suitable if the recovered sub-population has sig-
nificantly changed the population structure, and if this
sub-population is constantly immune to reinfection. For
COVID-19, however, the recovered sub-population still
represents a relatively small share in many countries as of
mid November 2020 and the risk of a reinfection can also
not be excluded. The SIDARTHE model can cover more
disease-related states and is suitable to model the epidemic
in the first outbreak. For the period after the first wave,
however, some states such as Diagnosed, Recognized or
Threatened, may be no more crucial for long term policy
making. The true critical factors after the first wave have
actually been reduced to the daily number of active cases
and death cases.

Note that the pi(t) in (1) represents the percentage of
infected persons in the region i, i.e., as the number
of population can be regarded as constant within the
considered duration, and pi(t) changes with the number of
active cases in region i. For the daily number of death cases
(the mortality rate f), it has been observed that it grows
rapidly if the number of critically infected patients exceeds
the available intensive care units. By assuming that the
number of critically infected patients also scales with the
number of active cases, an active-case-based mortality
curve is plotted in Fig. 2. Based on the relation in Fig.
2, the goal of minimizing the death cases in region i can
be cast into a constraint pi(t) ≤ pci , and a minimization of
pi(t) in the latter problem.

Now, as both active and death cases in region i are related
to pi(t), the SIS model in (1) is reformulated into the
following form for each region i ∈ Ns:
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Fig. 1. Nodes in black represent local regions in the con-
sidered country, whereas nodes in red are neighboring
countries (and the adjacency matrix on the right).
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Fig. 2. Relation between f(t) and pi(t) in region i, where
a threshold value pci exists according to Kantner and
Koprucki (2020).

ṗi(t) =(1 − pi(t))βi(
�

j∈Ns

αijpj(t) +
�

j∈Nf

αijpj(t))− δipi(t)

(3)

Compared to (1), the effect from other nodes to the
local node i is divided into the one from the neighboring
regions and the one from the neighboring countries. This is
because only the pi(t) of local regions i ∈ Ns are assumed
to be controllable by the policies, while the pj(t), j ∈ Nf ,
of neighboring countries are obtained from prediction.

In this paper, the following inputs (or policies) and their
impact are assumed to be at the disposal of the authorities:
1.) For each edge ei,j of the graph G, the entry αij ∈ R

≥0

in the adjacency matrix A can be selected from αmin to 1,
where αij = 1 implies that no restriction is imposed on the
connection, while αmin implies the most strict limitation.
2.) The requirement to wear masks or social distancing in
region i will reduce the infection rate βi ∈ [βmin, βmax],
βi ∈ R

≥0. 3.) The hospital staff allocated for COVID-
19 patients in region i will increase the healing rate δi ∈
[δmin, δmax], δi ∈ R

≥0.

It is assumed that the mapping from different policies to
the αij , βi, and δi values can be estimated according to
the experiences from the first outbreak. These policies,
however, will also lead to socio-economic costs. For a given
planning horizon [t0, t0 +H ], the policy is assumed to be
adjusted every T days (thus changed for totally Hc = H

T
times within this horizon and being constantly for T days).
Then the following socio-economic costs are considered: 1.)
Decreasing the αij(k) in step k ∈ {0, · · · , Hc − 1}, implies
a reduction of the interaction between different countries
and regions, leading to a cost of:

Ji,j(αij) :=
�

k∈{0,··· ,Hc−1}

ci,j · αij(k), ci,j < 0. (4)

2.) Decreasing the infection rate βi leads to a higher load
for local people, which is formulated by:

Ji(βi) :=
�

k∈{0,··· ,Hc−1}

cb,i · βi(k), cb,i < 0. (5)

3.) Increasing the healing rate δi implies that more hospital
staff is reserved for COVID-19 patients, thus the patients
due to other diseases cannot be properly handled, i.e.:

Ji(δi) :=
�

k∈{0,··· ,Hc−1}

cd,i · δi(k), cd,i > 0. (6)

The cost function terms in (4) – (6) are chosen to be linear
in order to directly reflect the effect of the corresponding
policy. In addition, as a frequent change of the policy
should be avoided, the following cost function term is
introduced to penalize large changes of the policy:

Jcont,i :=
�

k∈{0,··· ,Hc−2}

(
�

j∈N

(αij(k + 1)− αij(k))
2

+ (βi(k + 1)− βi(k))
2 + (δi(k + 1)− δi(k))

2). (7)

The overall cost function of i thus takes the form of:

Jall,i :=
�

j∈N

Ji,j(αij) + Ji(βi) + Ji(δi) +

� t0+H

t0

pi(t) dt,

where the last term records the active cases over the
considered horizon (each term of Jall,i can also be weighted
differently). The constraints on policy decisions consist
of input constraints for αij , βi and δi, and the state
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constraint pi(t) ≤ pci , i.e., the mortality threshold must not
be exceeded. Finally, for decision time t0 and for a given
pi(t0) in each local region i ∈ Ns, as well as a prediction
p̂j(t), t ∈ [t0, t0 + H ], on how the virus will spread in
neighboring countries j ∈ Nf , the following MPC problem
is solved to find the optimal intervention policy:

Problem 1.

min
αij ,βi,δi,∀i∈Ns

∑

i∈Ns

Jall,i (8)

s.t.: for all i ∈ Ns, t ∈ [t0, t0 +H ] :

dynamics (3)with given prediction p̂j(t), (9)

pi(t) ≤ pci ; (10)

for all k ∈ {0, · · · , Hc − 1} :

αij(k) ∈ [αmin, 1], ∀j ∈ N (11)

βi(k) ∈ [βmin, βmax], δi(k) ∈ [δmin, δmax]. (12)

Note that the threshold pci here should not be exceeded in
any time t, instead of only in decision time tk·T (leading
to a continuous-time optimization problem). The solution
can be carried out, e.g. by using the multiple-shooting
methods in Bock et al. (2000). Note that a high accuracy
of the solution is desired as it refers to social costs and
life of patients, while the solution time is not critical for
H being chosen to several weeks. By using the receding-
horizon scheme of MPC, the optimized policy of step k is
applied, and the optimization is repeated after T days in
the next step.

4. SIMULATION

To demonstrate which solutions are obtained from the
considered MPC strategy, the selected scenarios are pre-
sented: Consider the connection graph in Fig. 1, and the
percentages of infection pj(t), j ∈ Nf , for all neighboring
countries for totally 450 days as in Fig. 3. For the inves-
tigated country with five regions as in Fig. 1, the weight
αij , i �= j, can take values in the interval [0.2, 1], and the
infection rate βi varies within [5.4 · 10−3, 9 · 10−3], while
the healing rate δi is in [0.014, 0.017]. The infection rate βi

has a larger range than δi, since the latter value cannot be
significantly changed without efficient medicine. Default
values of these variables are αij = 1, βi = 9 · 10−3 and
δi = 0.014. The threshold value is chosen to pc = 0.0001.

Now, if the bang-bang intervention scheme is introduced
in the studied country, i.e., whenever pi(t) ≥ pc applies in
region i, this region is locked down in the next decision
time: thus the weight αij of each edge connecting region
i and the infection rate βi are reduced to the minimum,
and the healing rate βi is increased to the maximum. The
lock-down status then lasts for T = 30 days up to the
next decision time. The outcome by deploying this policy
is illustrated in Fig. 4 and the lock-down sequences in all
five regions are plotted in Fig. 5. One can notice that the
pi(t) are beyond the threshold pc in all regions for almost
all the time, despite the frequent lock-downs and large
fluctuations of pj(t) in other countries.

Next, assume that the development of pj(t) in the neigh-
boring countries can be exactly predicted, i.e., p̂j(t) =
pj(t), for all j ∈ Nf , t ∈ R

≥0 (In case a prediction error
exists, one can use the method in Liu and Stursberg (2019)
to handle uncertain prediction problems in MPC). In the

first test, the prediction horizon is selected to be H = 30
days (only one decision step), and the term (7) of the cost
function is not considered. Then, by solving Problem 1
in a receding-horizon scheme in each decision time, the
development of pi(t) in Fig. 6 is obtained, as well as the
corresponding βi and δi sequences, see Fig. 7 and 8 (The
sequences of αij are not shown due to space limitations).
Compared to the bang-bang intervention scheme, an over-
shoot over the threshold pc has been successfully avoided,
but a frequent change of the intervention policy occurs,
which is certainly undesired and also unrealistic.

Accordingly, if the prediction horizon is extended to H =
90 days (three decision steps) in Problem 1, and the term
(7) is considered in the cost function, the development of
pi(t) in Fig. 9 is obtained. Compared to the last test, the
threshold pc is reached after 270 days, while it was 120
days in Fig. 6, i.e. the spread of the virus has been slowed
down. For the corresponding αij , βi and δi sequences
plotted in Fig. 9 to Fig. 12, they also appear to be more
smoothly changed than in the last test. In general, the
above simulation results establish the following fact: If the
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development of the pandemic can be well predicted based
on the experiences from the first wave, and a sufficiently
large horizon is taken into account when deciding upon
the policy, a smooth strategy balancing the socio-economic
costs and the risk of a new outbreak can be found, while
the mortality rate is controlled to a relative low level.

5. CONSIDERATION OF UNCERTAINTIES

Note that the Problem 1 is a deterministic optimiza-
tion problem without uncertainties. This setting, however,
seems barely realistic if, e.g., intensive testing is not always
possible. In particular, exact values of the infection rate βi

and healing rate δi, or the edge weight αij can hardly be
determined in practice. More often, one can only identify
possible ranges of these rates and weights. This challenges
the MPC strategy which should be able to robustly satisfy
the constraints in Problem 1. To this end, the min-max
approaches tailored to robust MPC, see e.g. Campo and
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Fig. 6. Development of pi(t) in local regions by applying
the MPC strategy with H = 30 days.
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Fig. 7. Infection rate βi(k) when applying the MPC
strategy with H = 30 days.
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Fig. 8. Healing rate δi(k) when applying the MPC strategy
with H = 30 days.

Morari (1987), can be applied to satisfy the constraints
even in the worst case. Another type of uncertainty often
reported in media is a sudden outbreak in a hotspot of
region i, which can be represented by a dramatical in-
crease of pi(t) in short time. This hotspot scenario can be
modeled by adding a bounded stochastic disturbance ωi(t)
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Fig. 9. Development of pi(t) when applying the MPC
strategy with H = 90 days and the term (7).
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Fig. 11. Infection rate βi(k) when applying the MPC
strategy with H = 90 days.
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to the local dynamics (3), which follows a distribution that
can be estimated from evolutions in the first year of the
outbreak. Now, by replacing the dynamics (3) in Problem
1 by the stochastic model, one can either further apply
the min-max approaches to ensure the robust satisfaction
of the constraints. or adopt e.g. the technique of scenario-
based MPC, see Bernardini and Bemporad (2009), to
ensure that the constraints are satisfied in a mean-square
sense. Furthermore, one can use the stochastic model to
represent insufficient measurements of infected cases due
to a lack of testing. In addition, it should be mentioned
that Problem 1 only considers typical epidemic-related
social-costs and constraints, while additional types are
conceivable. For example, the economic costs such as the
damage caused by lock-down, or constraints like available
hospital staff can be included. Depending on the measur-
able data, Problem 1 should thus be adapted in every
decision step k by identifying new instances of dynamics,
costs, and constraints.

6. CONCLUSIONS

The objective of this paper was to illustrate that MPC
strategies can make a meaningful contribution to de-
termine intervention policies for a country against pan-
demics, and thus may serve as a tool for authorities.
The background of the problem is that simple bang-bang
schemes are not guaranteed to avoid a second wave of
the pandemic, as shown by simulation and recent expe-
riences. In addition, a frequent change of policies will
also lead to negative effects on life and economy, and
thus decreases the effectiveness. This paper has outlined
how to determine ,,smoother” strategies by using MPC,
taking the geographic position, the mortality rate, and
the socio-econonmic costs into account. Simulation results
have confirmed significant advantages compared to bang-
bang schemes. Upcoming work will take prediction and
modeling uncertainties into account, in order to enhance
robustness of the obtained policies.
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